3D CMEs and CME-driven shocks reconstructed from three-viewpoint observations

Bernd Inhester¹, Christian Moestl³

Li Feng^{1,2}

Max Planck Institute for Solar System Research, Germany Purple Mountain Observatory, CAS, China University of Graz, Austria

CMEs and CME-driven shocks

Mask Fitting Method

project each 3D grid point

A 3D point is considered to be within a CME only when its three projections are all located within the masks marked by red points in the left images.

Feng, Inhester et al. 2012, ApJ

Mask Fitting Method

Bezier curves are applied to smooth the reconstruction in each slice of CME.

The stack of all slices forms a CME cloud in 3D. Further analyses: geometric centre, eigen values along three principal axes.

3D reconstructions of a CME and its driven shock

3D reconstructions of a CME and its driven shock

Extend to HI 1 observations

CME tracing

shock tracing

Extend to HI 1 observations

CME tracing

shock tracing

Combined COR+HI1

Step 2: trace CME in HI 1

Using the traced CME at an earlier time to trace the CME periphery at a later time

Trace shock in HI1: running difference images

3D mask fitting reconstruction

Blue : 3D CME from STA+STB Red : 3D shock from STA+STB+LASCO/C3

Method comparison of 3D CMEs from COR+HI1

Earth

Moestl et al. 2014, ApJ

2012-07-12 CME

Morphological evolution (2012-07-12 CME)

17:24 UT

23:20UT

Link to in-situ observations

Moestl et al. 2014, ApJ

Magnetic field data of Messenger and VEX

VEX electron and ion spectral width probably heated plasma by the shock on July 14th

Validation of the 3D reconstruction

07-12 15:37 UT: Flare onset

2012-07-12 event does not have continuous LASCO observations, another event on 2012-06-14 being analysed has better data coverage

Conclusions and Outlook

We have reconstructed the 3D morphology of CMEs and CME-driven shocks using coronagraph and heliospheric images from three different viewpoints.

Outlook:

(1) Kinematics of CMEs and shocks along different directions
(2) Evolution of stand-off distance along different directions
(3) CME arrival time prediction at different planetary locations

(4) Link 3D reconstruction to the in-situ data at different planetary locations

Backup slides

Method Comparison of 3D CMEs from COR

2010-08-07 CME

Black: mask fitting; Red : GCS forward modelling

Polarization ratio: green and yellow

Advantage of mask fitting method : no a-priori assumption of the shape

Feng, Inhester, Mierla, et al., 2013, SoPh